

Solving Legendre's differential equation

LEGENDRE's differential equation has the form

$$(1 - t^2)\ddot{y} - 2t\dot{y} + n(n+1)y = 0 \tag{1}$$

with the general solution

$$y = \alpha P_n(t) + \beta Q_n(t), \tag{2}$$

where $P_n(t)$ and $Q_n(t)$ are linearly independent and are called LEGENDRE functions of the 1st- and 2nd-kind. $P_n(t)$ are polynomials which is what we are interested in.

Due to the factor $1-t^2$ this equation can not be directly transformed into an analog computer setup as this would require a division, the denominator of which tends to 0. Instead equation (1) is rewritten as

$$\ddot{y} - t^2 \ddot{y} - 2t \dot{y} + n(n+1)y = 0$$

which is then solved for \ddot{y} , yielding

$$\ddot{y} = t^2 \ddot{y} + 2t \dot{y} - n(n+1)y. \tag{3}$$

This is insofar unusual as \ddot{y} is not separated on the left side but also occurs on the right. In addition to that the terms $t^2\ddot{y}$ and $2t\dot{y}$ would require three multipliers if implemented in a naive way. One multiplier can be saved by rewriting equation (3):

$$\ddot{y} = t(t\ddot{y} + 2\dot{y}) - n(n+1)y.$$

To simplify notation, $n^+ = n(n+1)$ is introduced, finally yielding

$$\ddot{y} = t(t\ddot{y} + 2\dot{y}) - n^*y.$$

To select the desired solution $P_n(t)$ for this DEQ suitable initial conditions are required. Table 1 lists the $P_n(t)$ for $1 \le n \le 5$ with the resulting initial conditions for $\dot{y}(0)$ and y(0). Obviously the problem must be scaled at least with respect to \dot{y} as the

n	$P_n(t)$	y(0)	$\dot{y}(0)$
1	t	0	1
2	$\frac{3}{2}x^2 - \frac{1}{2}$	$-\frac{1}{2}$	0
3	$\frac{5}{2}x^3 - \frac{5}{2}x$	0 2	$-\frac{3}{2}$
4	$\frac{35}{8}x^4 - \frac{15}{4}x^3 + \frac{3}{8}$	$\frac{3}{8}$	0 2
5	$\begin{bmatrix} \frac{8}{8}x - \frac{4}{4}x^4 + \frac{8}{8} \\ \frac{63}{8}x^5 - \frac{35}{4}x^3 + \frac{15}{8}x \end{bmatrix}$	ő	$\frac{15}{8}$

Table 1: The first five $P_n(t)$ solving LEGENDRE's DEQ with the resulting initial conditions

initial conditions nearly reach 2 for n=5, thus giving rise to a scaling factor of $\frac{1}{2}$ for \dot{y} .

 n^* must also be scaled – assuming a maximum value of n=5 requires an additional scaling factor of $\frac{1}{n(n+1)}=\frac{1}{30}$. Some experimentation shows that \ddot{y} quickly approaches 20 for n=5 and $t\longrightarrow 1$. Taking all these scaling factors into account yields the program shown in figure 1, 2 the implementation of which on THE ANALOG THING is shown in figure 2.

To generate $P_5(t)$ with this setup, the initial conditions as well as n^* must be set according to table 1. It is y(0)=0 and $\dot{y}(0)=\frac{15}{8}$. With an overall scaling factor of $\frac{1}{2\dot{2}0}$ the initial value must be set to $\dot{y}(0)=\frac{15}{8\cdot 2\cdot 20}\approx 0.047$. n=5 yields $n^*=30$ so that the potentiometer following the integrator yielding y must be set to 0.05. The operation time is set to $\frac{1}{10}$ s with the time scale factors shown.

Figure 3 shows function $y(t) = P_5(t)$ resulting from these values.³ Experimenting with different initial conditions for $\dot{y}(0)$ and y(0) yields results of the general form of equation 2.

¹Adrien-Marie Legendre, 18.09.1752–09.01.1833

²The hat over the initial conditions denotes their scaled values.

 $^{^3}$ This is an x,y-plot with x=t showing the flyback when THE ANALOG THING switched from OP to IC mode.

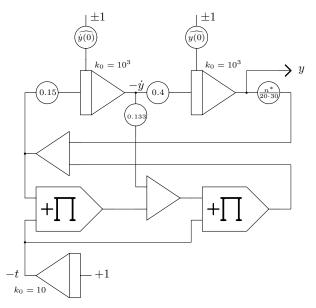


Figure 1: Analog computer program for solving the ${\tt LEGENDRE}$ DEQ

Figure 2: Actual setup of the problem on THE ANALOG THING

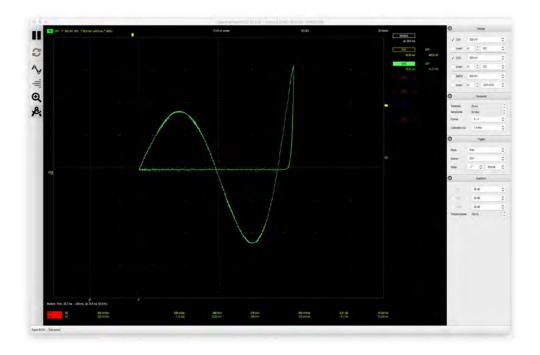


Figure 3: $P_5(t)$ with $0 \le t \le 1$