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Quantum Mechanical Two-Body Problem
with Gaussian potential

Figure 1: Two heavy (M) particles and one light (m) particle in a three-body system

This application note is inspired by the work described in [THIES et al. 2022]. In
this paper the authors develop a numerical method to calculate binding energies of
a quantum mechanical three-body system efficiently. This three-body system is com-
posed of two heavy and one light particle. In figure 1 the system is displayed with its
two-body (heavy/light) subsystems marked by dashed ellipses. The routine to calcu-
late binding energies for the three-body system first solves the two-body subsystem.
This application note aims to reproduce the findings in [THIES et al. 2022] for the
two-body systems using an analog computer.

1 Implementation

The SCHRODINGER equation for the two-body system is given by ([THIES et al. 2022]

eq. (1))
3¢~ wi(©)] 06 - Bule) )

where ¢ is the distance between the two particles, E their energy, (&) the wave
function of the system, —ugf(£) an attractive potential between the particles, and
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Figure 2: Analog computer program solving the SCHRODINGER equation with GAUSsian potential.

A¢ the Laplace operator. The depth of the potential is given by vy and the shape is
defined by a GAUssian function

F(€) = exp(=€?). (2)

With a GAUSsian potential eq. 1 becomes symmetric under the transformation

¢ — —& and the solutions are either even (¢(§) = ¥(—£)) or odd ((—&) = =1 (§)).
Hence, eq. 1 can be solved for & > 0 with initial conditions of either ¢/(0) # 0 and

¥'(0) = 0 (even) or ¥(0) = 0 and ¢’(0) # 0 (odd).
In figure 2 the analog program to solve eq. 1 is shown. In the upper half the
GAussian function is generated by solving the differential equation

HO=-210.  ad O =1 ()

One has to be careful about the variable of interest in equations such as 3 because
4& # 4 (all integrators integrate over time).

In the following & is defined as £ = \/gt, implying d% = %%. With this eq. 3
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can rewritten as

2d o
LS r0 =22t

o %f(g) — —atf(6) and  f(0)=1. (4)

The implementation of eq. 4 can directly be seen in the upper half of the analog
program in figure 2. The lower half implements the two-body SCHRODINGER equation
in eq. 1. To see this correspondence the equation can be rewritten:

3506 = 2w (©) + Bl w(©) (5)
o ( %) TR0 = ~2[u0f(€) + E](6) (6)
o TH0(6) = —a oo () + B w(e). (7)

The implementation of eq. 7 in the lower half of figure 2 is straightforward. The
potentiometer for E gets a negative reference input since for a positive potential
depth vy > 0 the wave function % is only bound if the energy is negative. The initial
conditions for v in figure 2 are set to generate even solutions.

2 Calculation

In [THIES et al. 2022] binding energies for the three-body system are calculated for
values of the potential depth vy for which the two-body subsystem has specific energy
values. So for a given energy one is interested in the value of vy, or in other words
the strength of the attractive force between the two particles, for which the two-body
system is bound.

A system is in a bound state, if its wave function ) remains localized. This implies
that for large values of &, 1 tends to zero (limg 4o () = 0). In the following two-

NICK BABERUXKI, Issue #36, 02-08-2022



W ANALOG

% PARADIGM Analog Computer Applications

Figure 3: Two runs of the analog program for E = —0.1 and o = 0.1 with at in yellow, f(t := \/gf)

in red and ¥ (t := \/gﬁ) in blue. The potential depth is vy ~ 0.342 for the left run and vy ~ 0.343
for the right run.

body energies of £ = —1071, —1072, —10~2 are investigated. The potential depth v,
required for the system to be in a bound state can be derived by varying v, until ¢ is
localized.

This process in depicted in figure 3. The program is set up for £ = —0.1 and
a = 0.1 on an Analog Paradigm Model-1. All integrators have a time scale factor of
ko = 10* with the exception of two integrators with an o = 0.1 scaling in front, which
is absorbed into the time scale factor by setting ko = 103. With this setup the effect
on v by varying vy can be tested and a bound state of the system can be derived.

In figure 3 it can be seen that even very slight changes of v, affect ). Both of the
states are not bound states, because limg_&ooz/}(g) = 0. However, the two states in
figure 3 suggest that for some value of vy between 0.342 and 0.343 there is a bound
state. With this process regions of vy for different values of F/, in which the system is
bound, can be derived.
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E Yo
Model-1 | [THIES et al. 2022]
—1071 0.343(1) 0.34459535
—1072 | 0.0886(1) 0.08887372
—1073 | 0.0250(1) 0.02613437

Table 1: Values of vy at different energies E. Results from the Model-1 analog computer are compared
with results from [THIES et al. 2022] table 1.

3 Results

In table 1 the results from the analog computer are compared with the results in
[THIES et al. 2022]. The values of vy derived by the analog computer setup are all
close the theoretical values. For E = —0.1 and £ = —0.01 the deviations are less
than 0.5% and for E = —1073 it is about 5%. The uncertainties given for values of v
from the Model-1 are derived from the variation of vy around the bounded state of .
Uncertainties of the analog program due to the limited precision of analog components
are not analysed.
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