
Analog Computer Applications

Finding roots of nonlinear equations
This application note draws inspiration from the work of Huang et al. [1].

The continuous Newton method is a powerful numerical algorithm for solving non-

linear equations that has been gaining popularity due to its efficiency and robustness.

However, its implementation on digital computers can be computationally expensive,

especially for problems with a large number of variables.

This application note shows how to implement the continuous Newton method on an

analogue computer by the example of a few easy-to-reproduce examples to demonstrate

its effectiveness. The examples of this paper show only one-dimensional problems but

for more complex systems of equations with multiple variables in higher dimensions

this approach can be used too. This Note provides detailed instructions, making the

experiments easily reproducible. Overall, it is shown that analogue computing can be

a valuable tool for solving non-linear equations. Hence they can also be used to solve

many bigger problems such as e.g. solving non-linear partial differential equations via

finite elements method.

The classical Newton’s method starts with an initial guess and then iteratively refines

the guess by using the following equation

xn+1 = xn −
f(xn)

f ′(xn)
, (1)

where f(x) is the function whose root is being sought and f ′(x) its derivative. However

this method isn’t feaseble for fast fluctuating functions and a wrong initial guess may

lead to divergence. In recent years, the continuous Newton method has emerged as an

alternative to the classical Newton’s method since it improves its sensitivity towards

fluctuation. The method involves solving (a system of) ordinary differential equations.

and derived from the Newton’s method by first introducing a damping factor to the

equation. Therefore one starty by turning equation (1) to

xn+1 − xn = −h · f(xn)

f ′(xn)
. (2)
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Then, via h → 0 one obtains the differential equation

ẋ(t) = − f(x(t))

f ′(x(t))
. (3)

Analoguously in the multi-dimensional case one can conclude

ẋ(t) = −[J(x(t))]−1f(x(t)) (4)

where J(x) is the Jacobian matrix of f(x) and which is referred to as the continuous

newton method. The continuous Newton method offers an efficient and robust alter-

native to the classical Newton’s Method for solving non-linear equations, especially for

problems with a large number of variables.

Analoge Implementation for linear and quadratic function

Two easy to implement toy problems are linear and quadratic functions. For linear

equations of the form f(x) = ax+ b, where a, b ∈ R>0, equation (3) leads to:

ẋ(t) = x+
b

a
(5)

and can be implemented on an analog computer just as shown in figure 1. However

the in figure 1 implemented divider comes by construction with a restriction. The

denominator can’t be negative. To fix this problem for the next example this setup

has been improved with the help of two additional comperators and summers. The

improved divider can be seen in figure 2.
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Figure 1: analog root finder for f(x) = ax+ b
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Figure 2: Improved Divider. Here the denominator y can be negative too.
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With this upgrade an a bit more interesting example can be created on analog

computers without a dedicated divider such as a THAT. This time for the set of

quadratic functions of the form f(x) = (x + a)2 − b roots have been determined by

implementing the following ODE

ẋ(t) =
(x+ a)2 − b

2(x+ a)
.

The circut for implementing this setup on an analog computer is shown in figure 4. At

this example one can see how much of an impact the initial value x0 has got. Figure

3 emphasizes the importance of a proper chosen initial condition. For the example

f(x) = (x + 0.5)2 − 0.25 one can see, that for IC> −0.5 equation (3) will converge

against the root 0 and if IC< −0.5 the root x = −1 is found. One may be aware

of the fact that the ”hard border” for the initial condition is not always the middle

between the two neighboored roots, instead most of the time the next extrema has a

great impact on the convergence of the algorithm.

(a) IC= 0.46 (b) IC= 0.52

Figure 3: Impact of the initial condition on the continous newton method
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Figure 4: analog root finder for f(x) = (x− a)2 + b.
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An example for a qubic function

This example has been implemented on a model 1 with dedicated divider. The analog

circuit diagram corresponding to this example is shown in Figure 6. The results of

the analog implementation can be seen in Figure 5. Both implemented scenarios

demonstrate a function with a local maximum below the x-axis, but with different initial

conditions. Again a bad initial guess will lead the differential equation to approach

the extremum, resulting in the observed behavior arising from division by zero. (a)

illustrates that there are no issues when starting to the right of the local minimum

(below the x-axis), as the differential equation’s solution moves towards and ultimately

converges to the root. On the other hand, if one starts with a poor initial guess, the

system behaves as depicted in (c), adhering to the expected overload limits at ±1.

This leads to oscillations around the extremum point, as depicted in (b).

(a) (b) (c)

Figure 5: The first two images in the series display the analog results for a good and a poor initial
guess, respectively. The third image illustrates the theoretical quotient of f and f ′.
.
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Figure 6: analog root finder for f(x) = x3 + 1
6 (x

2 − x)− 0.1. By ommiting the green wires, one can ommit the
linear term.
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