
Analog Computer Applications

The exponentially-mapped-past approach
It is often desirable to compute something like an arithmetic mean

x =

n∑
i=1

xi

n

for a (time) continuous variable x(t). A very simple approach could look like this:

x =
1

t1 − t0

t1∫
t0

x(t) dt

Although this approach works fine on an analog computer it requires fixed times t0
and t1 which is only practical in few cases.

To overcome this problem [Otterman(1960)] introduced exponentially-mapped-

past (EMP) variables in order to extend the idea of a mean to continuous variables in

continuous time on which the classic EAI application note [EAI 1.3.2(1964)] is based.1

The basic idea is to introduce a weighting function that ensures that recent values

influence the result more strongly than values in the past. The following equation

demonstrates this technique with the integral running from the most distant past −∞
to 0 (=“now”):2

x̃(0) = α

0∫
−∞

x(t)eαt dt

Here, α denotes a normalization factor:

0∫
−∞

eαt dt =
1

α

1Otterman’s work has its roots in [Fano(1950)]. This application note closely follows these sources as well as
[EAI 1.3.2(1964)].

2x̃ denotes the EMP mean.

Dr. Bernd Ulmann, Issue #32, 23-NOV-2021



Analog Computer Applications

x(t) α

α

x̃(t)

Figure 1: EMP mean circuit – the parameter α determines how quickly the weigthing function
“forgets” past input values

Implementing this scheme on an analog computer is straightforward and guarantees

that the integrator will not overload even with long run times (given that x(t) remains

in suitable bounds).

This can be further generalized as

x̃(T ) = α

T∫
−∞

x(t)eα(t−T ) dt = αe−αT
T∫

−∞

x(t)eαt dt, (1)

a convolution integral of the input function x(t) and an exponentially decaying weigth-

ing function, the derivative of which with respect to T is

d

dT
x̃ = α

−αe−αT
T∫

−∞

x(t)eαt dt+ e−αT eαTx(T )

 = αx(T )− αx̃(T ). (2)

Based on (2) the analog computer setup shown in figure 1 can be directly derived.

This basically implements a “leaky integrator” which can also be seen as a low-pass

RC filter. It should be noted that this only works if no exact estimation of the mean

value is required during the startup time of the computation. After a step input, the

output will reach 95% of the step height in the time interval 3/α. This must be taken

into account for the startup time as well.
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α
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α

Figure 2: EMP variance circuit

One can now ask if the idea of EMP variables also allows the calculation of a type

of variance. In the discrete case the variance is defined by

σ2 =
1

n− 1

n∑
i=1

(xi − x̃)2 .

Analogously to (1) this can be extended to continuous variables in continuous time as

σ̃2(T ) = α

T∫
−∞

(x(t)− x̃(t))2 eα(t−T ) dt = αe−αT
T∫

−∞

(x(t)− x̃(t))2 eαt dt

which can be mechanized by the analog computer setup shown in figure 2.

Equally straightforward is the computation of an EMP autocorrelation ρ̃(τ) based

on

ρ̃(τ) = α

T∫
−∞

x(t)x(t− τ)e−α(T−t) dt

as shown in figure 3 where τ represents the time delay used for the correlation. The

time delay function shown can be implemented using various techniques such as Padé

or Stubbs-Single approximations (cf. [Ulmann(2020), pp. 95–108]).
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Figure 3: EMP autocorrelation circuit

The Wiener-Khinchin theorem states that the spectral decomposition of the

autocorrelation function of a suitable function is given by the power spectrum of that

function.3 Thus, it is possible to compute an EMP power spectrum based on ρ̃(τ).

The EMP Fourier transform is defined as

F̃ (ω) = α

T∫
−∞

x(t)e−α(T−t)e−iωt dt = αe−iωt
T∫

−∞

x(t)e−α(T−t)eiω(T−t) dt.

The power spectrum is P (ω) = |F (ω)|2, i. e. in the EMP case it is

P̃ (ω) = α2


 T∫
−∞

x(t)e−α(T−t) cos(ω(T − t)) dt

2

+

 T∫
−∞

x(t)e−α(T−t) sin(ω(T − t)) dt

2
 .

The corresponding analog computer setup is shown in figure 4. At its heart is a simple

quadrature oscillator consisting of two integrators and a summer in a loop. This yields

both, the sine and cosine components, the squares of which are summed to yield the

desired output.
3Questions regarding convergence criteria are beyond the scope of this application note.
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Figure 4: EMP Fourier circuit
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