
Analog Computer Applications

Fun with sinc(t)1

1 Introduction

The unnormalized sinc2 function, also called sampling function, is defined as

sinc(x) =
sin(x)

x
.

Using l’Hôpital’s rule, the value of sinc(0) can be determined easily since the numerator

and denominator have the limit 0 and the first derivative of both also exists:

lim
x→0

sinc(x) = lim
x→0

sin(x)

x
= lim

x→0

cos(x)

1
= 1.

Figure 1 shows the graph of sinc(x) and its normalised variant.3

This function occurs in many contexts – its normalized variant is the Fourier transform

of the rectangle function4

rect

(
t

a

)
=


0 if |t| > a

2
1
2 if |t| = a

2

1 if |t| < a
2

, thus it also describes the amplitudes of light diffracted at a slit, it even has connections to

prime numbers Riemann’s ζ-function, it can be used to reconstruct signals from sampling

data, etc.

This application note shows two approaches for generating sinc(x) for x > 0 (and not too

large). In both cases x is replaced by the machine time t, which is generated by integrating

over a (small) constant.

1The author would like to thank Dr. Chris Giles for fruitful discussions and his meticulous proofreading.
2The normalized sinc function is defined as sincx =

sin(πx)
πx

.
3Source: By Georg-Johann - Own work, CC BY-SA 3.0, https://commons.wikimedia.org/w/index.php?

curid=17007237.
4Also called the Heaviside Pi function.

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024



Analog Computer Applications

Figure 1: Graph of sinc(x)

2 Direct approach

The first approach is straightforward: Generate sin(t) and divide it by t. Mathematically this

works fine, although the division may misbehave for very small values in an analog computer.

Generating a sine function is basically the “hello world” of analog computing and typically

done by solving ÿ = y. Since the numerator t is limited to the interval [0, 1], there is no

need to employ any form of amplitude stabilisation.

The straightforward implementation is shown in figure 2, while figure 3 shows the corre-

sponding result. The division is implemented using an open amplifier with a multiplier in its

feedback path.5

5Cf. [Ulmann 2023, p. 76]. It may be necessary to add a small capacitor (around 100 pF maximum) between the
output of the amplifier and its summing junction to stabilise this subcircuit.

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024



Analog Computer Applications

Figure 2: Analog computer setup for equation (2)

In order to obtain a number of oscillations of sinc(t) as the output t, should run from

some small ε to about 100, which is obviously impossible, given the machine interval of

[−1, 1]. The “trick” is to restrict t to [ε, 1] an upscaling it during division. Of course, the

denominator cannot be 100t as this would exceed the machine unit interval. Instead, the

numerator is multiplied by 1
100 . The integrator yielding t should start at a very small positive

value instead of 0.

As one can see, the result deviates substantially from sinc(t) near 0 as a division of the

form ε1
ε2

with small εi not necessarily yields a result close to 1.

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024



Analog Computer Applications

Figure 3: Result of the program shown in figure 4

3 Indirect approach

This second approach is a little bit more involved as it is based on deriving a differential

equation with sinc(τ) as its solution (given suitable initial conditions). To derive such a

DEQ we need the first and second derivatives:

y =
sin(t)

t

ẏ =
cos(t)

t
− sin(t)

t2
(1)

ÿ = −sin(t)

t
+ 2

sin(t)

t3
− 2

cos(t)

t2

Combining these three equations the following DEQ can be derived

tÿ + 2ẏ + ty = 0,

yielding

ÿ = −2ẏ + ty

t
. (2)

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024



Analog Computer Applications

The corresponding two initial conditions can be derived in a straightforward way:

y(0) = lim
t→0

sin(t)

t
= 1

as shown above. Visual inspection suggests ẏ = 0 which can be shown easily using short

Taylor approximations for sin(t) and cos(t):

sin(t) = t− t3

6
+O(t4) (3)

cos(t) = 1− t2

2
+

t4

24
+O(t5) (4)

Using (1) in conjunction with (3) and (4) yields

ẏ(0) = lim
t→0

cos(t)

t
− sin(t)

t2
≈ lim

t→0

1

t
− t

2
+

t3

24
− 1

t
+

t

6
= 0.

Using (2) with y(0) = 1 and ẏ = 0 can be directly transformed into an analog computer

setup as shown in figure 4. The corresponding result is shown in figure 5. t is created and

treated exactly as described above.

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024



Analog Computer Applications

Figure 4: Analog computer setup for equation (2)

Figure 5: Result of the program shown in figure 4

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024



Analog Computer Applications

4 Conclusion

While both solutions do not behave perfectly near 0, the second approach yields a much

better result than the straightforward solution. The difference between both sinc(t) imple-

mentations is shown in figure 6. The overall setup, implementing both approaches at once,

is shown in figure 7.

Figure 6: Difference between the results obtained by both methods

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024



Analog Computer Applications

Figure 7: Setup of both approaches to computing sinc(t) on THE ANALOG THING

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024



Analog Computer Applications

Happy analog computing!

References

[Ulmann 2023] Bernd Ulmann, Analog and Hybrid Computer Programming, 2nd edi-

tion, DeGruyter, 2023

Dr. Bernd Ulmann, Issue #49, 19-NOV-2024, 23-NOV-2024


