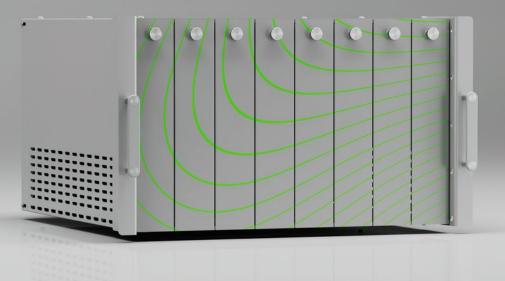
anabrid

Revolutionizing Supercomputing

The anabrid REDAC System

REDAC, developed by anabrid for the DLR Quantum Computing Initiative (QCI), offers a groundbreaking platform for academia and industry to explore unconventional computing architectures. This reconfigurable discrete analog computer directly addresses the growing need for energy-efficient high-performance computing. REDAC enables the implementation of physical dynamical systems to solve complex problems through its analog paradigm, seamlessly integrating with existing digital workflows.

Tech Brief REDAC


Architecture and Specifications	 A REDAC as shown above contains 6 modular clusters, with a total of 432 multipliers, 864 integrators 1.728 summation lanes, 124.416 switching elements and 3.456 scaling elements Remote access and a reconfigurable architecture accessible via a user-friendly software stack Modular structure enables cascading multiple REDACs 	
Topology	 Local all-to-all coupling implemented Option for customized topologies via topology modules Crossbar-based routing supports scalable interconnects Configured via software-stack running on digital computer (place-and-route) 	
Bandwidth and Communication	 Analog signal routing ensures high parallel bandwidth Hybrid system with digital interfaces for programming & control (e.g., Python, Jupyter) Supports batch operations, real-time feedback, external synchronization Offers analog I/O interface 	
Automated Calibration Process	 Offset and gain error compensation in hardware addresses temperature drift and component heterogeneity Firmware-based error correction Temperature stabilization strategies Empirical accuracy: <1% deviation compared to digital PDE solvers 	

Federal Ministry for Economic Affairs and Climate Action A project of

anabrid

Main Focus	Energy and Efficiency	USPs
 Solving complex ordinary and partial differential equations (ODEs & PDEs) Hybrid computation platform for research & industry Test-bed for unconventional computing Solving optimization problems 	 REDAC power consumption 10-20 times less than modern digital computers Significantly faster for large problem sets Solve complex problems with great accuracy in real-time Analog computation enables real-time solutions difficult to achieve with digital computers 	 REDAC combines analog computing power with digital control It enables real-time solutions for complex equations Up to thousands of computing elements work in parallel in a modular structure Better energy efficiency than digital computers Significantly faster for a large set of problems Seamless integration into digital workflows (Python, Jupyter, API) Excellent for optimization, simulation & scientific computations

The REDAC System

Exemplary applications are solving differential equations (PDEs, ODEs), the heat conduction equation, hydrodynamic models, real-time optimization problems, like energy minimization and Monte-Carlo methods, hybrid analog-digital/quantum computations, i.e., in symbiosis with digital or quantum algorithms and parallelized numerical simulations. REDAC is built on a groundbreaking analog dataflow architecture that delivers unparalleled performance and energy-efficiency. REDAC is available as an on-premise, data- center-grade solution or as a cloud computing service hosted by anabrid or its certified OEM partners, ensuring flexibility and scalability for diverse user needs.

Federal Ministry for Economic Affairs and Climate Action

